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Abstract. Recent developments of the nuclear shell model are presented. The magic numbers are the key
concept of the shell model, and are shown to be different in exotic nuclei from those of stable nuclei. Their
novel origin and robustness will be discussed. By the Monte Carlo Shell Model (MCSM), the structure of
low-lying states can be studied with realistic interactions for a wide variety of nuclei. Some examples are
discussed in connection to the triaxial deformation and a narrow shell gap at N = 20 for Z smaller.

PACS. 21.60.Cs Shell model – 21.30.Fe Forces in hadronic systems and effective interactions – 13.75.Cs
Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 21.10.-k Properties of nuclei; nu-
clear energy levels

1 Introduction

I shall discuss, in this paper, our recent results on shell
model studies of exotic nuclei, indicating that the shell, or
magic, structure can be varied in going from stable to ex-
otic nuclei and such a change is strongly related to certain
properties of the nucleon-nucleon interaction [1]. I shall
propose a paradigm of shell evolution as one of the key
principles in determining the structure of exotic nuclei [2].
The magic numbers play a key role in many-body

physics as the most fundamental quantity reflecting pos-
sible shell structure. The nuclear shell model has been
started by Mayer and Jensen by identifying its magic num-
bers and their origin [3]. The study of nuclear structure
has advanced on the basis of the shell structure thus clar-
ified. Shell-model studies, on the other hand, have been
made predominantly for stable nuclei, which are on or near
the β-stability line in the nuclear chart. This is basically
because only those nuclei have been accessible experimen-
tally. In such stable nuclei, the magic numbers suggested
by Mayer and Jensen remain valid, and the shell structure
can be understood well in terms of the harmonic-oscillator
potential with a spin-orbit splitting.
Recently, studies on exotic nuclei far from the β-

stability line have started owing to the development of
radioactive nuclear beams, as discussed also in this con-
ference. The magic numbers in such exotic nuclei can be
a quite intriguing issue. I shall show that new magic num-
bers appear and some other conventional ones disappear
in moving from stable to exotic nuclei in a rather novel
manner due to a particular part of the nucleon-nucleon
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interaction [1,2]. Although the magic numbers are promi-
nent features, there are gradual changes of underlying
single-particle or shell structure. Including those changes,
I would like to call these phenomena “Shell Evolution”.

If single-particle energies are calculated by the Woods-
Saxon potential, they change as the proton number (Z)
or the neutron number (N) varies. In this case, the single-
particle energies are shifted basically in parallel, keeping
their relative energies (or mutual differences of the ener-
gies) almost unchanged. This kind of change is due to the
variation of the potential radius depending on A (= N+Z)
and/or the shift of the potential depth associated with
N/Z asymmetry, and is not called Shell Evolution. Note
that, even with the Woods-Saxon potential, the relative
energies can be changed near drip lines owing to varying
influences of the centrifugal potential, but such changes
are not the subject of this paper, and may be better re-
ferred to with a different nomenclature because of their
kinetic origin.

Shell Evolution means that the relative energies can
vary rather significantly as N and/or Z change. If this
energy change becomes sufficiently significant, even the
shell gap can disappear or a new gap may arise. Thus, as
a result of the Shell Evolution, the magic numbers may
change.

The Shell Evolution has been seen in the p-shell and
sd-shell already [1]. In order to understand it, we use ef-
fective single-particle energies as explained in sect. 2. The
Shell Evolution seems to occur, in many cases, due to
the common mechanism related to the Nucleon-Nucleon
(NN) interaction as discussed in sects. 3 and 4. Because of
this generality and robustness, one can raise the paradigm
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of the Shell Evolution as an underlying principle determin-
ing the structure of exotic nuclei.

2 Effective single-particle energies

In order to understand the underlying single-particle prop-
erties of a nucleus, we can make use of effective (spherical)
single-particle energies (ESPEs), which represent mean ef-
fects from the other nucleons on a nucleon in a specified
single-particle orbit.
In the shell model, single-particle orbits are classified

into two groups. One is for the orbits in the inert core,
which is a closed shell. The other is for the orbits outside
the inert core, and valence nucleons are moving on those
orbits. Here, we are discussing spherical single-particle or-
bits with good orbital and total angular momenta, l and j.
Each orbit has its single-particle energy. This energy con-
tains the kinetic energy and the binding from the nucleons
in the inert core. For nuclei consisting of the inert core and
only one more nucleon (like 17O), these single-particle en-
ergies give the energy levels of the nucleus unless the inert
core is broken. In the usual shell model calculations, these
single-particle energies are called bare single-particle ener-
gies.
As one adds more valence nucleons on top of the inert

core, effects of the so-called residual interaction become
larger. The shell-model (residual) interaction between va-
lence nucleons includes various multipole components. We
shall discuss on them. The quadrupole component, for in-
stance, is the origin of the quadrupole collectivity pro-
ducing vibrational and rotational spectra. To be intuitive,
the quadrupole component produces more binding energy,
when the relative angle (with respect to the center of the
nucleus) between two interacting nucleons is smaller, i.e.,
two nucleons are correlated in angle. By making such a
correlation collective, one comes to a deformed shape. For
instance, in the case of a prolate shape, valence nucleons
are gathered near the longer axis.
In contrast, in the monopole component, effects de-

pending on this relative angle between valence nucleons
are averaged out. Namely, the monopole component does
not care how far the two interacting nucleons are in angle.
We next discuss how to calculate the monopole compo-

nent. The two-body matrix element of the interaction de-
pends on the angular momentum J , coupled by the two in-
teracting nucleons in orbits j1 and j2. This J-dependence
is averaged out with a weight factor (2J +1). Since mean
effects are being considered, only diagonal matrix elements
are taken. The monopole interaction is thus obtained with
a matrix element [4,5]:

V T
j1j2 =

∑

J(2J + 1)〈j1j2|V |j1j2〉JT
∑

J(2J + 1)
, for T = 0, 1, (1)

where 〈j1j2|V |j
′

1j
′

2〉JT stands for the matrix element of a
two-body interaction, V . Although this is still a two-body
interaction, it has no dependence on J . Here, the isospin
dependence, T = 0 or 1, is kept, however.

We point out an important property of the monopole
interaction. Since the angular correlation is taken away,
two nucleons can be at any magnetic substate, yielding
the same binding energy. So, in evaluating its effects in
a system with many valence nucleons, only the number
of nucleons in each orbit matters. This implies that the
effect of the monopole interaction can be accumulated,
and therefore, its effect becomes the largest when the orbit
is fully occupied. On the other hand, this is not the case for
other multipoles, and the effects vanish for fully occupied
orbits. Mathematically, the monopole operator has a finite
trace, whereas the trace is zero for other multipoles. Thus,
even a weak monopole interaction can be magnified in its
effect by a large number of nucleons.
The monopole Hamiltonian consists of the bare single-

particle energies stated above and the monopole interac-
tion (between valence nucleons).
The ESPE is evaluated from this monopole Hamil-

tonian, and can naturally play the role of a measure of
mean effects from the other nucleons, including the va-
lence ones. For simplicity, the normal filling configuration
is used. Note once again that, because the J-dependence
is taken away, only the number of nucleons in each or-
bit matters. As a natural assumption, the lowest possible
isospin coupling is considered for protons and neutrons
in the same orbit. The ESPE of an occupied orbit is de-
fined to be the separation energy of this orbit with the
opposite sign. Note that the separation energy implies the
minimum energy needed to take a nucleon out of this or-
bit. The ESPE of an unoccupied orbit is defined to be the
binding energy gain by putting a proton or neutron into
this orbit with the opposite sign.
Thus, effective single-particle energies can be defined

and we now use them. In actual calculations, the isospin
coupling must be considered between the two orbits in
the monopole Hamiltonian, but this is a rather theoretical
detail and is not discussed here (see eq. (1) of [5], for
example).

3 The shell gap at N = 16

We now show ESPEs for a stable nucleus (30Si) and for
an exotic nucleus (24O) in fig. 1(a) and (b), respectively.
The shell model Hamiltonian is the one derived in [5]. This
Hamiltonian produces quite good agreement with experi-
ment for a large number of nuclei within a single frame-
work [5,6].
In fig. 1(b), shown are ESPEs for 24O, where the 0d3/2

is lying much higher, very close to the pf shell. A consid-
erable gap (∼ 4 MeV) is observed between the 0d3/2 and

the pf shell for the stable nucleus 30Si, whereas an even
larger gap (∼ 6 MeV) is found between 0d3/2 and 1s1/2

for 24O. The basic mechanism of this dramatic change is
the strongly attractive interaction shown schematically in
fig. 1(c), where j> = l+1/2 and j< = l−1/2 with l being
the orbital angular momentum. In the present case, l = 2.
One now should remember that valence protons are added
into the 0d5/2 orbit as Z increases from 8 to 14. Due to a
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Fig. 1. ESPEs for (a) 30Si and (b) 24O, relative to 0d5/2. The
dashed line connecting (a) and (b) is drawn to indicate the
change of the 0d3/2 level. (c) The major interaction producing
the change between (a) and (b). (d) The elementary process
relevant to the interaction in (c). Taken from [1].

strong attraction between a proton in 0d5/2 and a neutron
in 0d3/2, as more protons are put into 0d5/2, a neutron in
0d3/2 is more strongly bound. Thus, the 0d3/2 ESPE for

neutrons is so low in 30Si as compared to that in 24O.

4 Spin-isospin dependence in the NN

interaction

The process illustrated in fig. 1(d) produces the attractive
interaction in fig. 1(c). The NN interaction in this process
is written as

Vτσ = τ · τ σ · σ fτσ(r). (2)

Here, the symbol “·” denotes a scalar product, τ and σ
stand for isospin and spin operators, respectively, r implies
the distance between two interacting nucleons, and fτσ is
a function of r. In the long-range (or no r-dependence)
limit of fτσ(r), the interaction in eq. (2) can couple only
a pair of orbits with the same orbital angular momentum
l, which are nothing but j> and j<.
The σ operator couples j> to j< (and vice versa) much

more strongly than j> to j> or j< to j<. Therefore, the
spin-flip process is more favored in the vertices in fig. 1(d).
The same mathematical mechanism works for isospin: the
τ operator favors charge-exchange processes. Combining
these two properties, Vτσ produces large matrix elements
for the spin-flip isospin-flip processes: proton in j> → neu-
tron in j< and vice versa. This gives rise to the interaction
in fig. 1(c). This feature is a general one and is maintained
with fτσ(r) in eq. (2) with reasonable r-dependences.
Although Vτσ yields sizable attraction between a pro-

ton in j> and a neutron also in j>, the effect is weaker
than in the case of fig. 1(c).
In stable nuclei with N ∼ Z with ample occupancy of

the j> orbit in the valence shell, the proton (neutron) j<
orbit is lowered by neutrons (protons) in the j> orbit. In
exotic nuclei, this lowering can be absent, and then the
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Fig. 2. Effective single-particle energies of neutrons for
(a) oxygen isotopes from N = 8 to 20 and (b) N = 20 iso-
tones from Z = 8 to 20. Taken from [7].

j< orbit is located rather high, not far from the upper
shell. In this sense, the proton-neutron j>-j< interaction
enlarges a gap between major shells for stable nuclei with
proper occupancy of relevant orbits.
The origin of the strongly attractive Vτσ is quite clear.

The One-Boson-Exchange-Potentials (OBEP) for π and ρ
mesons have this type of terms as major contributions.
While the OBEP is one of the major parts of the effective
NN interaction, the effective NN interaction in nuclei
can be provided by a G-matrix calculation with core po-
larization corrections. Such effective NN interaction will
be called simply G-matrix interaction for brevity. The G-
matrix interaction should maintain the basic features of
meson exchange processes, and, in fact, existing G-matrix
interactions generally have quite large matrix elements for
the cases shown in fig. 1(c) [8].

5 The gap at N = 20 and the structure of

N = 20 exotic nuclei

We now turn to exotic nuclei with N ∼ 20. Figures 2(a)
and (b) show the ESPEs of neutrons for oxygen isotopes
and N = 20 isotones, respectively [7]. The small effective
gap between 0d3/2 and the pf shell for neutrons is seen
in oxygen isotopes in fig. 2(a), while this gap becomes
wider as Z increases in the N = 20 isotones in fig. 2(b).
This small gap for smaller Z is nothing but what we have
seen for 24O in fig. 1(b). Thus, the disappearance of N =
20 magic structure in exotic nuclei with Z much smaller
than 20 and the appearance of the new magic structure
in 24O [9] have the same origin. Furthermore, one sees a
less pronounced gap between 0d5/2 and 1s1/2 at N = 14

in fig. 2(a). This gap makes 22O a magic-like nucleus [10].
The excitation of neutrons across the N = 20 gap pro-

duces various deformations. As an example, fig. 3 shows
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Fig. 3. Level structure of 32,34Mg. Taken from [2].

low-lying energy levels of 32,34Mg. Some levels are known
experimentally [11–13], and the agreement is quite good
to calculated results obtained by the Monte Carlo Shell
Model [5,7,14–16].

The spacing between the 2+1 and 4
+
1 can suggest, to a

good extent, the shapes of these nuclei, although the 4+1
level may be only tentatively known experimentally [11–
13]. The ratio between the excitation energies of these
two states is 2.65 in 32Mg, suggesting that this nucleus
is triaxially deformed [17]. On the other hand, the same
ratio becomes 3.1 in 34Mg, suggesting that this nucleus is
an axially-symmetric rotor. Such a difference seems to be
attributed to the number of neutrons in the pf shell: about
two in 32Mg and about four in 34Mg. The latter case can
produce the strong prolate deformation within the f7/2

orbit, while the former case is not enough to stabilize it
and favors an oblate deformation. Therefore, by combining
with the prolate deformed proton system in the sd shell,
34Mg becomes a prolate axially symmetric rotor, whereas
32Mg tends to be triaxially deformed. I emphasize that
the present calculated results are predictions as shown in
an earlier reference [5].

The present calculation [5] predicts the B(E2; 2+1 →
0+1 ) values also quite well in agreement with experimental
values [18,19]. Although the B(E2) value has been mea-
sured only between the 0+1 and 2

+
1 states, the calculated

B(E2; 4+1 → 2+1 ) values suggest the triaxial deformation
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Fig. 4. Level structure of 30Na. Arrows indicate E2 transitions
with widths proportional to their B(E2) values. Experimental
data are taken from [20].

for 32Mg and the axially symmetric deformation for 34Mg,
in a consistent manner with their excitation energies.
Another example is the level scheme of 30Na shown

in fig. 4. One finds a remarkable agreement between the
MCSM calculation with the present Hamiltonian and the
experiment [20]. On the other hand, in the sd-shell model,
where only the sd shell is taken as the valence shell, only
poor agreement can be achieved.

6 Heavier nuclei: N = 34

Moving back to heavier nuclei, from the strong interac-
tion in fig. 1(c), we can predict other magic numbers, for
instance, N = 34 associated with the 0f7/2-0f5/2 interac-
tion. A recent experiment seems to support N = 34 new
magic number [21].

7 Summary and perspectives

In summary, we showed how shell structure and magic
numbers are changed in nuclei far from the β-stability line:
N = 6, 16, 34, etc. can become magic numbers in neutron-
rich exotic nuclei, while usual magic numbers, N = 8, 20,
40, etc., may disappear. The mechanism of this change
can be explained by the strong attractive Vτσ interaction
which has robust origins in OBEP, G-matrix and QCD.
In fact, simple structure features such as magic numbers
should have a simple and robust basis. Including other
possible origins, I would like to propose that the struc-
ture of stable and exotic nuclei should be studied with
the paradigm of Shell Evolution where the shell structure
(and magic numbers) can vary significantly as results of
variable contributions of nucleon-nucleon interaction and
many-body dynamics, depending on Z and N .
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